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Abstract
We investigate the dynamical behaviour of the Sherrington–Kirkpatrick mean
field model of spin glasses by numerical simulation. All the timescales τx we
have measured behave as ln(τx) ∝ Nε , where N is the number of spins and
ε � 1

3 . This is true whether the autocorrelation function used to define τx is
sensitive to the full reversal of the system or not.

PACS numbers: 75.50.Lk, 02.60.-x, 05.50.+q

Today many features of the Sherrington–Kirkpatrick mean field model of spin glasses [1–3]
have been clarified. Most of the questions that still need investigating are related to the very
interesting dynamics of the model (see for example [4]). Here, following Mackenzie and
Young [5], we examine the equilibrium dynamics of the model. In this classic paper the
authors gave numerical evidence, from systems with up to 192 spins, for the existence of a
spectrum of relaxation times which diverge with the number of spins N as ln(τ ) ∝ N1/4,
and of a second, longer ‘ergodic’ timescale τeg which is the time needed to turn over all
the spins, with 〈ln(τeg)〉 ∝ N1/2. In order to do this one looks both at the processes that
require a full reversal of all the spins and at processes that, in contrast, are not sensitive to
this phenomenon. In this letter, we establish that indeed all dynamical scales have the same
behaviour, compatible with barrier heights growing as Nε , where ε � 0.3 is close to the N1/3

behaviour suggested in [6–8] (see also the numerical simulations in [9]). This result is at
variance with the findings of [5], where smaller lattices were used and different observables
were analysed: the exponents determined in [5] can be regarded as effective exponents that
govern the dynamics in a transient regime.

Let us start by giving some details about our simulation. We study systems with N = 64,
128, 256, 512 and 1024 spins, with ±1 couplings. We first thermalize the system using the
parallel tempering optimized Monte Carlo procedure [10] with a set of 38 T values in the
range 0.4–1.325 (i.e. �T = 0.025). We perform 400 000 iterations (one iteration consists of
one Metropolis sweep plus one tempering update cycle), and store the final well equilibrated
configurations. Next we start updating these equilibrium configurations (more precisely the
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subset with T = 0.4, 0.5, . . .) with a simple Metropolis dynamics, and perform 4 × 106

Metropolis sweeps. We have in all cases two replica and 512 realizations of the disorder.
For each of these samples we compute the flip times τ1, τ2 and τ3. We define τ

(J )
1 as the

time after which, on a given sample J , the time-dependent self-overlap

q(0, t) ≡ 1

N

∑

i

σi(0)σi(t) (1)

has become smaller than +�, with

� ≡
√

〈q2〉J (2)

where 〈q2〉J , the usual square Parisi overlap, is computed during the second half of the parallel
tempering run for the given sample. The time t is measured in units of sweeps, with t = 0
at the beginning of the Metropolis dynamics. We define analogously τ2 as the time it takes to
q(0, t) to decay from its initial value of 1 down to 0, and τ3 as the time it takes to q(0, t) to
decay down to −�.

We expect3 τ1, τ2 and τ3 to obey the same scaling law. In the following we will try to
check if an exponential scaling of the kind

τ1,2,3 � A1,2,3 exp
(
α1,2,3N

ε
)

(3)

gives a good fit to the data, and we will try to determine ε.
We base our analysis on empirical medians for ln(τ ), i.e. we sort the 512 values of ln(τ )

as ln(τ (0)) � ln(τ (1)) � · · · � ln(τ (511)) (more precisely the 512 values of ln(τ ) averaged over
the two replica) and define the median as ln(τ (255)). For large N and small T , the probability
distribution of τ has a very long tail (for large values of τ ), and in many cases we are not
able to compute average values, since for some samples τ is larger than the number of sweeps
performed. In contrast, the median approach works, and allows a fair estimate. In all cases
where we are also able to estimate the average value of ln(τ ), we find that it is very similar to
the median value. Thanks to this approach we have been able to estimate τ1 on all our lattice
sizes down to T = 0.4, τ2 down to T = 0.5 and τ3 down to T = 0.6. Statistical errors have
been computed using the usual bootstrap procedure.

The second decay time of interest is the timescale that governs the decay of, for example,
the square (time-dependent) overlap. We monitor the decay of 〈q(0, t)〉J and of

q2
c (t) ≡ 〈q2(0, t)〉J − 〈q2〉J (4)

and we call τq and τq2 the timescales that characterize the short-time decay of these objects
(see later for details regarding the exact definition).

Let us start with the results for τ1, τ2 and τ3. In figure 1 we plot one of our most successful
fits of τ3: here we are at T = 0.6, the fit is very good and we estimate

ετ3(T = 0.6) = 0.25 ± 0.04 (5)

that can be compared to

ετ1(T = 0.6) = 0.20 ± 0.16 ετ2(T = 0.6) = 0.19 ± 0.07 (6)

(the fits for the three different τi , i = 1, 2, 3 are all good, of the same quality as the one we
have shown in the figure). Our estimates for ετ1 , ετ2 and ετ3 turn out to be very similar. The
general pattern that emerges from these fit is of a very good consistency. Let us go into some

3 Notice that while τ2 and τ3 are unambiguous signatures of the transition to the reversed part of the phase space, τ1
can be ambiguous, since depending on T it can still characterize a transition in the short-time regime or already an
ergodic transition. The fact that the three τi turn out to be compatible gives further support to the existence of a single
timescale exponent ε.
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Figure 1. Points with errors are for ln(τ3) versus N , and the continuous curve for our best fit to
the form (3).

more detail. Fits to ετ3 (here, as we said, we wait for q to become negative and equal to −�)
are available only down to T = 0.6 (at lower T values τ3 is too large and we are not able
to estimate at all ετ3 ). For T from 0.6 up to 0.8 the best fit is very stable with an exponent
close to 0.25–0.30. When going too close to the critical point the behaviour becomes less
clean. ετ2 (where we wait for q becoming zero) can be determined down to T = 0.5 (τ2

is smaller than τ3). Here fluctuations are slightly larger than in the former case, but again
up to T = 0.8 the exponent fluctuates in the range 0.2–0.3. In the ετ1 case (where we only
wait for q decreasing from 1 down to +�) we succeed in obtaining a good estimate down to
T = 0.4. Again here, for example, we estimate ετ1(T = 0.4) � 0.25, and we get a quite stable
fit in T . We remark that when T approaches Tc the estimates of ετ1,2,3 have large errors: α

becomes very small (one expects α → 0 for T → Tc) and the leading Nε behaviour cannot be
distinguished, with the present range of system sizes, from sub-leading corrections. It is also
important to note that our data fully confirms that different ways to estimate the correlation
times (the 1, 2 and 3 τ ) lead to the same scaling behaviour, with a scaling exponent close to
�0.3.

Let us note here (this is the focal point of this letter, as we will discuss in greater detail
in the following) that the result of equation (5) does not manifest, as opposite to the findings
of [5], a scale of the order of exp(cN

1
2 ). The scale we observe is governed by an exponent

close to 0.3.
We discuss now the measurements of correlation times that do not involve the reversal

of all the spins. As an example we plot in figure 2 q2
c (t) versus ln(t) at T = 0.6,

and in figure 3 the same quantity at T = 0.4. The two figures exhibit two regimes
separated by some crossover value tmax: a small-time regime, where q2

c (t) decays slowly
with ln(t), and a large-t regime where q2

c (t) is very small. This is very suggestive
of the existence of a whole spectrum of relaxation times, up to some maximal value
≈tmax.

We have defined the correlation time τq2 by computing the time needed for q2
c (t) to decrease

from the value 0.25 to a threshold value T that we vary ([5] was looking directly to the moment
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Figure 2. q2
c (t) versus ln(t) at T = 0.6.
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Figure 3. q2
c (t) versus ln(t) at T = 0.4.

in which q2
c (t) is close enough to zero)4. In the case of q2

c (t) we have used the two threshold
values T1 = 0.125 and T2 = 0.050.

The exponents we estimate by best fits to the form (3) are again quite stable (even if
in this case we have not been able to produce reliable error estimates) and, let us note right
away, if any they are larger than the one estimated for the full reversal times τ1,2,3: we can
be quite precise in the claim that the scenario where a slower timescale governs the full spin
reversal while a faster timescale governs the valley-to-valley migration does not apply. As an
example, we plot in figure 4 the τq2 time as a function of N , and our best fit to the form (3)

4 It is important to note that the ergodic correlation times τi and these τq2 , τq are defined in very different ways, and
none of them as a simple, bona fide coefficient of an exponential decay e−t/τ . The fact that we find that they satisfy
reasonable scaling laws shows that the definitions we use are well founded.
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Figure 4. Data points are for ln(τq2 ) (without error-bars) versus N , and the continuous curve for
our best fit to the form (3).
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Figure 5. q(t) versus ln(t) at T = 0.6.

at T = 0.4 and for a threshold T2 = 0.050: the estimated exponent here is 0.38 ± 0.05. The
exponent values are very stable when changing the value of the lower threshold, which is a
very good sign. In the T range 0.5–0.8 the estimated value of ε lies in the range 0.28–0.38, i.e.
completely compatible with the value 1

3 that is reasonable from a theoretical point of view (see,
for example, [6,7]). The quality of the best fit degenerates again when T becomes too close to
Tc. It is may be worth stressing here that the determination of the exponent ε is a very difficult
problem, exponentially more difficult than the usual determination of critical exponents, since
here instead of a power behaviour we are trying to fit an exponential to a power behaviour: if τ

ranges over five orders of magnitude (which would be more than acceptable for a power fit) its
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Figure 6. q(t) versus ln(t) at T = 0.4.
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Figure 7. Data points are for ln(τq ) (without error-bars) versus N , and the continuous curve for
our best fit to the form (3).

logarithm ranges over half a decade only, which gives a poor basis for our fit to the exponential
of a power law.

We have also measured q(t), which we plot in figures 5 and 6 for T = 0.6 and 0.4
respectively. At large times q(t) goes to zero, in contrast we expect the initial decay to be
governed from the same process that determines the decay of q2

c (t). It is also interesting
to note that we are observing the expected plateau at the Edwards–Anderson value of the
self-overlap, qEA: with good approximation one estimates [2] qEA(T = 0.6) � 0.50 and
qEA(T = 0.4) � 0.74. These two values coincide very well with the locations where on our
larger lattice we see a plateau: this is very clear at T = 0.4 in figure 6 and a bit less clean but
also evident at T = 0.6 in figure 5. The finite, large system, spends a long time at qEA before
having q(t) → 0 because of the ergodic transition.
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Figure 8. q2
c (t) versus ln(t)0.25 at T = 0.4.
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Figure 9. ln(τq2 ) versus T for N = 1024. The solid curve is our best fit to an Arrhenius behaviour.

We have checked that by fitting with the same procedure used for q2
c (t), using this time

the q interval going from 1 down to 0.63 (we use a higher low threshold to stay far from the
actual decay to zero). Things work well, and we fit a scaling exponent for the correlation times
statistically compatible with the one obtained for q2

c (t). We show in figure 7 the analogue of
figure 4, where the best fit gives ετq

= 0.34±0.02 (again, highly compatible with the value 1
3 ).

Consistent results (slightly lower, of the order of 0.25) are obtained at higher T values.
It is clear from the figures we have shown that q(t) and q2

c (t) decay very slowly to zero
on a logarithmic scale. We try to be more quantitative in figure 8, where we show that the
q2

c (t) data are very linear when plotted, for example, as a function of ln(t)β , with β = 0.25:
we do not consider that as a fair determination of β, since there is a large range of values of β
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which makes the plot linear. What we can claim is that β is surely a small value, of the order
of magnitude of 0.25. At higher T values we have the same kind of behaviour.

In figure 9 we show, for our largest system, ln(τq2) as function of T . The data are
very well explained by the fact that we expect an Arrhenius-like behaviour, exp

(
A
T

)
, with

A � (Tc − T ) [6]: a coefficient proportional to Tc−T

T
fits the data very well indeed.

We can sketch a few conclusions. In the Sherrington–Kirkpatrick mean field model of
spin glasses one single time scaling dictates the behaviour of the correlation times related
to the complete reversal of all spins and to the transitions through the different states that
constitute the phase space: the speculation suggesting that one could get two different scaling
laws is unfounded. It is not easy to get precise values for the exponent that characterizes this
exponential scaling, but all our findings are compatible with a ε = 1

3 scaling: this is consistent
with barrier scaling such as N1/3 [6, 7]. We have also been able to show that the connected
squared overlap decays to zero with a power of the logarithm of the order of 0.25 (and clearly
not like a power law).

One of us (EM) warmly thanks the Service de Physique Théorique of CEA/Saclay and the
Laboratoire de Physique Théorique et Modèles Statistiques of Université Paris-Sud for kind
hospitality, where part of this work was completed. We thank Bernard Derrida, Giorgio Parisi,
Felix Ritort and Marta Sales for useful conversations.
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[4] Bouchaud J-P, Cugliandolo L F, Kurchan J and Mézard M 1998 Spin Glasses and Random Fields ed P Young

(Singapore: World Scientific) p 161
[5] Mackenzie N D and Young A P 1982 Phys. Rev. Lett. 49 301

Mackenzie N D and Young A P 1983 J. Phys. C: Solid State Phys. 16 5321
[6] Rodgers G J and Moore M A 1989 J. Phys. A: Math. Gen. 22 1085
[7] Vertechi D and Virasoro M A 1989 J. Phys. (France) 50 2325

Vertechi D and Virasoro M A 1990 Europhys. Lett. 12 589
[8] Kinzelbach H and Horner H 1991 Z. Phys. B 84 95
[9] Colborne S 1990 J. Phys. A: Math. Gen. 23 4013

[10] Hukushima K and Nemoto K 1996 J. Phys. Soc. Japan 65 1604
Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 J. Stat. Phys. 82 155
Marinari E 1997 Optimized Monte Carlo methods Advances in Computer Simulation ed J Kertesz and I Kondor

(Berlin: Springer)


